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Summary: The intra- and intermolecular condensation 
of alcohols with bis-sulfone methylenes, Le., dehydrative 
alkylation, using DEAD and Ph3P proceeds stereospe- 
cifically at room temperature under essentially neutral 
conditions affording good to excellent yields of alkylation1 
annulation products. 

The classic Mitsunobu condensation2 of an alcohol with 
a carboxylic acid, mediated by dialkyl azodicarboxylatel 
triphenylphosphine, involves the in situ generation of a 
highly reactive alkoxyphosphonium intermediate3 which 
undergoes nucleophilic displacement under mild, nearly 
neutral conditions with virtually complete inversion of 
configuration at the electrophilic site (eq 1). Numerous 

modifications4 of this protocol have extended its utility to 
other types of nucleophiles, inter alia, thiolacetate, halides, 
silanols, tosylate, phthalimide, and heterocycles. Our 
recent observation6 that DEAD/PhP complex converts 
y-nitroalkanols to or-nitrocyclopropanes in good to excel- 
lent yields represents a rare example of participation by 
a carbon-centered nucleophile.6 

However, all efforts to exploit the latter dehydrative 
alkylation of nitro paraffins to form larger rings or for 
intermolecular condensations failed and, thus, prompted 
us to evaluate other fun~tionalities.~ Herein, we report 
that bis-sulfones are particularly effective for a wide variety 
of dehydrative alkylations/annulationss as summarized 
in Table I. Cyclizations affording both small- (entries 1 
and 2) and medium-sized rings (entry 3) were achieved 
with equal ease. Likewise, intermolecular alkylative 
dehydrations proceeded smoothly (entry 4) and, when 
applied to diols in the presence of excess reagent, provided 
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ready access to functionalized carbocycles in good yield 
(cf. entries 2 and 5). In consideration of the gentle reaction 
conditions, the creation of carbon-carbon bonds by this 
technique is anticipated to be compatible with many 
common functionalities, e.g., acetonides (entry 6). While 
simple secondary alcohols are suitable substrates (entry 
7), sterically congested cases are unreactive (entry 8). 
Backside displacement by the incoming nucleophile was 
confirmed in entry 9 with the stereospecific formation of 
a cis-fused decalin, an AB-ring synthon of interest in 
natural products synthesis. With allylic alcohols, either 
s N 2  or SN2' attack is possible; entries 10 and 11, respec- 
tively, clearly demonstrate that both modes of reaction 
are operative depending on structural constraints. 

The versatility of the sulfoneg moiety in synthesis is 
noteworthy and enhances the ultimate utility of the 
preceding methodology. The transformations in Figure 
1 illustrate, in part, the broad range of applications now 
available. Of particular interest are those procedures 
developed in these laboratories to complement the present 
studies: a facile and sequential sulfone reduction using 
lithium naphthalenidelo (4.4 equiv) at -78 OC gives the 
corresponding methylene (route a); monodesulfonylation 
with naphthalenide and trapping of the resultant anion 
according to literature precedent gives rise to a carbonylll 
(route b), tertiary sulfone12 (route c), trisubstituted olefinl3 
(route d), or or,@-unsaturated sulfone14 (route e). Taking 
advantage of the acidity of the methine hydrogen, terminal 
bis-sulfones are converted to perdeuterated methyls upon 
warming (60 "C, 3 h) with excess magnesium turnings16 
in MeOH-dl (route f). Controlled Sm4 cleavagel6 of the 
bis-sulfone in the presence of ketones furnishes g o d  yields 
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Table I. Dehydrative Alkylations/Annulations of Bis-Sulfones 
yieldb (% ) 
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a Reaction conditions. A reactant(s) was added dropwise to a preformed complex of DEAD/PhP in benzene at  ambient temperature. After 
1 h, the solvent was evaporated and the residue purified by chromatography. B: DEAD was added dropwise to a benzene solution of reactant(s) 
and Phsp. After 1 h, the product was isolated as above. * Baaed on isolated, chromatographically homogeneous material. e 1.6 equiv each of 
DEAD and Phsp. d 3 equiv each of DEAD and PhP. e Characterized as the bis-acetate after acetonide hydrolysis. 
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of adducta (route g); this contrasts sharply with alkali metal 
salts of sulfones which are typically unreactive towards 
ketones.13 

The synergism amongst the various facets of the present 
investigation as well as their efficacy and operational 

(le! SmIncleavageof amono-sulfone: Kunzer, H.;Strahnke, M.; Sauer, 
G.; Wiechert, R. Tetrahedron Lett. 1991,32,1949-1962. 

simplicity are highlighted in a brief, asymmetric total 
synthesis of pheromone component 4 of the lesser tea 
tortrix17 (Scheme I). Alkylation of commercial (S)-(+)- 
2-butanol (1) with inversion of configuration using bis- 
(phenylsulfony1)methane (1 equiv) and DEAD/Ph@ 
complex in benzene evolves bis-sulfone 2. The one-pot 
monodesulfonylation of 2 with lithium naphthalenide (-78 
OC, 5 min), in situ alkylation ( -78O - +23 OC, 1 h), and 
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Figure 1. Transformations of bis-sulfones. 
second desulfonylation (-78 OC, 5 min) leads to THP ether 
3.lIc Direct acetylation of 3 as prescribed18 generates 4, 
[(rI2'D =-5.94' (C 10, CHCla) (fit."a [ (r ]%~ = -5.93' (C 10, 
CHCls)). 
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